# Fractals are typically not self-similar

1,771,278

45,794

619

Genre: Education

Family friendly? Yes

Wilson score: 0.9856

Rating: 4.9467 / 5

Engagement: 2.62%

3Blue1Brown

Shared January 27, 2017

An explanation of fractal dimension.
Brought to you by you: http://3b1b.co/fractals-thanks
And by Affirm: https://www.affirm.com/

Music by Vince Rubinetti: https://soundcloud.com/vincerubinetti...

One technical note: It's possible to have fractals with an integer dimension. The example to have in mind is some *very* rough curve, which just so happens to achieve roughness level exactly 2. Slightly rough might be around 1.1-dimension; quite rough could be 1.5; but a very rough curve could get up to 2.0 (or more). A classic example of this is the boundary of the Mandelbrot set. The Sierpinski pyramid also has dimension 2 (try computing it!).

The proper definition of a fractal, at least as Mandelbrot wrote it, is a shape whose "Hausdorff dimension" is greater than its "topological dimension". Hausdorff dimension is similar to the box-counting one I showed in this video, in some sense counting using balls instead of boxes, and it coincides with box-counting dimension in many cases. But it's more general, at the cost of being a bit harder to describe.

Topological dimension is something that's always an integer, wherein (loosely speaking) curve-ish things are 1-dimensional, surface-ish things are two-dimensional, etc. For example, a Koch Curve has topological dimension 1, and Hausdorff dimension 1.262. A rough surface might have topological dimension 2, but fractal dimension 2.3. And if a curve with topological dimension 1 has a Hausdorff dimension that *happens* to be exactly 2, or 3, or 4, etc., it would be considered a fractal, even though it's fractal dimension is an integer.

See Mandelbrot's book "The Fractal Geometry of Nature" for the full details and more examples.

------------------
3blue1brown is a channel about animating math, in all senses of the word animate. And you know the drill with YouTube, if you want to stay posted about new videos, subscribe, and click the bell to receive notifications (if you're into that).

If you are new to this channel and want to see more, a good place to start is this playlist: https://www.youtube.com/playlist?list...

Various social media stuffs:
Reddit: https://www.reddit.com/r/3Blue1Brown

18:18

Hilbert's Curve: Is infinite math useful?

##### 3Blue1Brown 976K views

26:21

But how does bitcoin actually work?

##### 3Blue1Brown 2.9M views

13:37

Times Tables, Mandelbrot and the Heart of Mathematics

##### Mathologer 1.7M views

16:30

Who cares about topology? (Inscribed rectangle problem)

##### 3Blue1Brown 1.3M views

10:59

Flaw in the Enigma Code - Numberphile

##### Numberphile 3.1M views

19:07

Making sense of string theory | Brian Greene

##### TED 2.5M views

12:34

Delayed Choice Quantum Eraser Explained

##### Sergio Rey-Silva 810K views

12:40

Lambda Calculus - Computerphile

##### Computerphile 572K views

29:43

Pi hiding in prime regularities

##### 3Blue1Brown 1M view

21:19

Benoit Mandelbrot: Fractals and the art of roughness

##### TED 289K views

19:13

But what is a Neural Network? | Deep learning, chapter 1

##### 3Blue1Brown 5.8M views

16:02

The Brachistochrone, with Steven Strogatz

##### 3Blue1Brown 673K views

15:42

Divergence and curl: The language of Maxwell's equations, fluid flow, and more

##### 3Blue1Brown 1.1M views

22:30

Why do prime numbers make these spirals?

##### 3Blue1Brown 1.3M views

20:28

Visualizing the Riemann hypothesis and analytic continuation

24:14

##### Vsauce 24M views

15:57

The dark side of the Mandelbrot set

##### Mathologer 801K views

17:32

Why is pi here? And why is it squared? A geometric answer to the Basel problem